Implementing the centiloid transformation for 11C-PiB and β-amyloid 18F-PET tracers using CapAIBL

AuthorsBourgeat, Pierrick
Doré, Vincent
Fripp, Jurgen
Ames, David
Masters, Colin L
Salvado, Olivier
Villemagne, Victor L
Rowe, Christopher C
TypeJournal Article (Original Research)
JournalNeuroImage
PubMed ID30130643
Year of Publication2018
URLhttp://ahro.austin.org.au/austinjspui/handle/1/18211
DOIhttps://doi.org/10.1016/j.neuroimage.2018.08.044
AbstractThe centiloid scale was recently proposed to provide a standard framework for the quantification of β-amyloid PET images, so that amyloid burden can be expressed on a standard scale. While the framework prescribes SPM8 as the standard analysis method for PET quantification, non-standard methods can be calibrated to produce centiloid values. We have previously developed a PET-only quantification: CapAIBL. In this study, we show how CapAIBL can be calibrated to the centiloid scale. Calibration images for 11C-PiB, 18F-NAV4694, 18F-Florbetaben, 18F-Flutemetamol and 18F- Florbetapir were analysed using the standard method and CapAIBL. Using these images, both methods were calibrated to the centiloid scale. Centiloid values computed using CapAIBL were compared to those computed using standard method. For each tracer, a separate validation was performed using an independent dataset from the AIBL study. Using the calibration images, there was a very strong agreement, and very little bias between the centiloid values computed using CapAIBL and those computed using the standard method with R2 > 0.97 across all tracers. Using images from AIBL, the agreement was also high with R2 > 0.96 across all tracers. In this dataset, there was a small underestimation of the centiloid values computed using CapAIBL of less than 0.8% in PiB, and a small over-estimation of 1.3% in Florbetapir, and 0.8% in Flutemetamol. There was a larger overestimation of 8% in NAV images, and 14% underestimation in Florbetaben images. However, some of these differences could be explained by the use of different scanners between the calibration scans and the ones used in AIBL. The PET-only quantification method, CapAIBL, can produce reliable centiloid values. The bias observed in the AIBL dataset for 18F-NAV4694 and 18F-Florbetaben may indicate that using different scanners or reconstruction methods might require scanner-specific adjustments.

http://www.ibas.org.au/what-we-do/publications/3872992


< More publications



CHEST-MND:PROCHEST-MND:PRO

Motor neurone disease (MND) causes the body's muscles to weaken. Breathing muscle weakness means that most people affected by MND will eventually lose the ability to take a deep breath and cough strongly....

Respiratory Biomarkers in Motor Neurone DiseaseRESPIRATORY BIOMARKERS IN MOTOR NEURONE DISEASE

The inability to breathe is unfortunately the most common cause of death in people living with Motor Neurone Disease (MND). Last year, our clinical research group in Melbourne reported that breathing...

Recognising research meritRECOGNISING RESEARCH MERIT

Kudos to Dr. Lauren Booker & Dr. Jen Cori on their JOEM publication examining fatigue detection alarms in rural truck drivers. Their study explores the alarms' effectiveness, accuracy, and habituation, offering key insights into fatigue management.

Honoring Excellence in ResearchHONORING EXCELLENCE IN RESEARCH

Congratulations to Prof. Anne Holland and A/Prof. Narelle Cox for being featured in the NHMRC's 10 of the Best - 16th Edition. Their work exemplifies groundbreaking research delivering extraordinary outcomes.

AMRF Grant Awards for 2025AMRF GRANT AWARDS FOR 2025

Grants Success: The Institute for Breathing and Sleep (IBAS) has received two research grants from the Austin Medical Research Foundation (AMRF) for 2025. Congratulations to Dr Charissa Zaga and Dr Catherine Hill from IBAS.

Recognition by MND AustraliaRECOGNITION BY MND AUSTRALIA

Congratulations to Professor David Berlowitz, Dr Marnie Graco, and Dr Nicole Sheers who were recognised by Motor Neurone Disease (MND) Australia at a Parliament House event sponsored by the Parliamentary Friends of MND in Canberra last week.

Institute for Breathing and Sleep

Level 5, Harold Stokes Building, Austin Health
145 Studley Road
Heidelberg, Victoria, 3084

(03) 9496 5390

Email Us

Donate