Magnetic resonance imaging of the upper airway in patients with quadriplegia and obstructive sleep apnea

AuthorsO'Donoghue, F.J.
Meaklim, H.
Bilston, L.
Hatt, A.
Connelly, A.
Jackson, G.
Farquharson, S.
Sutherland, K.
Cistulli, P.A.
Brown, D.J.
Berlowitz, D.J.
TypeJournal Article (Original Research)
JournalJournal of Sleep Research
PubMed ID29082563
Year of Publication2018
URLhttps://www.ncbi.nlm.nih.gov/pubmed/29082563
DOI/10.1111/jsr.12616
Download Odonoghue_et_al-2017-Journal_of_Sleep_Research.pdf (288.4 KB)
AbstractThe aim of this study was to investigate upper airway anatomy in quadriplegics with obstructive sleep apnea. Fifty subjects were recruited from three hospitals in Australia: people with quadriplegia due to spinal cord injury and obstructive sleep apnea (n = 11), able-bodied people with obstructive sleep apnea (n = 18), and healthy, able-bodied controls (n = 19). All underwent 3-Tesla magnetic resonance imaging of their upper airway. A subgroup (n = 34) received a topical vasoconstrictor, phenylephrine and post-phenylephrine magnetic resonance imaging. Mixed-model analysis indicated no significant differences in total airway lumen volume between the three groups (P = 0.086). Spinal cord injury-obstructive sleep apnea subjects had a significantly larger volume of soft palate (P = 0.020) and retroglossal lateral pharyngeal walls (P = 0.043) than able-bodied controls. Able-bodied-obstructive sleep apnea subjects had a smaller mandible volume than spinal cord injury-obstructive sleep apnea subjects and able-bodied control subjects (P = 0.036). No differences were seen in airway length between groups when controlling for height (P = 0.055). There was a marginal increase in velopharyngeal volume across groups post-phenylephrine (P = 0.050), and post hoc testing indicated the difference was confined to the able-bodied-obstructive sleep apnea group (P < 0.001). No other upper airway structures showed significant changes with phenylephrine administration. In conclusion, people with obstructive sleep apnea and quadriplegia do not have a structurally smaller airway than able-bodied subjects. They did, however, have greater volumes of soft palate and lateral pharyngeal walls, possibly due to greater neck fat deposition. The acute response to upper airway topical vasoconstriction was not enhanced in those with obstructive sleep apnea and quadriplegia. Changes in upper airway anatomy likely contribute to the high incidence in obstructive sleep apnea in quadriplegic subjects.

http://www.ibas.org.au/what-we-do/publications/3872986


< More publications



CHEST-MND:PROCHEST-MND:PRO

Motor neurone disease (MND) causes the body's muscles to weaken. Breathing muscle weakness means that most people affected by MND will eventually lose the ability to take a deep breath and cough strongly....

Respiratory Biomarkers in Motor Neurone DiseaseRESPIRATORY BIOMARKERS IN MOTOR NEURONE DISEASE

The inability to breathe is unfortunately the most common cause of death in people living with Motor Neurone Disease (MND). Last year, our clinical research group in Melbourne reported that breathing...

Recognising research meritRECOGNISING RESEARCH MERIT

Kudos to Dr. Lauren Booker & Dr. Jen Cori on their JOEM publication examining fatigue detection alarms in rural truck drivers. Their study explores the alarms' effectiveness, accuracy, and habituation, offering key insights into fatigue management.

Honoring Excellence in ResearchHONORING EXCELLENCE IN RESEARCH

Congratulations to Prof. Anne Holland and A/Prof. Narelle Cox for being featured in the NHMRC's 10 of the Best - 16th Edition. Their work exemplifies groundbreaking research delivering extraordinary outcomes.

World Sleep Day on 14th March 2025WORLD SLEEP DAY ON 14TH MARCH 2025

The benefits of quality sleep and to acknowledge the issue of sleep problems and their medical, educational, and social aspects as well as the prevention and management of sleep disorders, is promoted on World Sleep Day on the 14th March 2025.

AMRF Grant Awards for 2025AMRF GRANT AWARDS FOR 2025

Grants Success: The Institute for Breathing and Sleep (IBAS) has received two research grants from the Austin Medical Research Foundation (AMRF) for 2025. Congratulations to Dr Charissa Zaga and Dr Catherine Hill from IBAS.

Institute for Breathing and Sleep

Level 5, Harold Stokes Building, Austin Health
145 Studley Road
Heidelberg, Victoria, 3084

(03) 9496 5390

Email Us

Donate