Reliability of sternal instability scale (SIS) for transverse sternotomy in lung transplantation (LTX)

AuthorsFuller, L.M.
El-Ansary, D.
Button, B.
Bondarendko, J.
Marasco, S.
Snell, G
Holland, A.E.
TypeJournal Article (Original Research)
JournalPhysiotherapy Theory and Practice
PubMed ID29369002
Year of Publication2018
URLhttps://www.ncbi.nlm.nih.gov/pubmed/29369002
DOI/10.1080/09593985.2018.1431342
Download Reliability_of_sternal_instability_scale_SIS_for_transverse_sternotomy_in_lung_transplantation_LTX.pdf (661.9 KB)
AbstractA surgical incision for bilateral sequential lung transplantation (BSLTX) is the "clam shell" (CSI) approach via bilateral anterior thoracotomies and a transverse sternotomy to allow for sequential replacement of the lungs. This can be associated with significant post-operative pain, bony overriding or sternal instability. The sternal instability scale (SIS) is a non-invasive manual assessment tool that can be used to detect early bony non-union or instability following CSI; however, its reliability is unknown. OBJECTIVE: This prospective blinded reliability study aimed to assess intra-rater and inter-rater reliability of the SIS following lung transplantation. METHOD: Participants post BSLTX aged older than 18 years underwent sternal assessment utilizing the SIS. Two assessors examined the sternum using a standardized protocol at two separate time points with a test-re-test time of 48 hours. The outcome measure was SIS tool using four categories from 0 (clinically stable) to 3 (separated sternum with overriding). RESULTS: In total, 20 participants (75% female) with a mean age of 48 years (SD 17) and mean pain score of 3 out of 10 were included, 60% having well healed wounds and 25% reporting symptoms of sternal clicking. The most painful self-reported painful activity was coughing. The SIS demonstrated excellent reliability with a kappa = 0.91 by different assessors on the same day, and kappa = 0.83 for assessments by the same assessor on different days. CONCLUSION: The SIS is a reliable manual assessment tool for evaluation of sternal instability after CSI following BSLTX and may facilitate the timely detection and management of sternal instability.

http://www.ibas.org.au/what-we-do/publications/3872965


< More publications



CHEST-MND:PROCHEST-MND:PRO

Motor neurone disease (MND) causes the body's muscles to weaken. Breathing muscle weakness means that most people affected by MND will eventually lose the ability to take a deep breath and cough strongly....

Respiratory Biomarkers in Motor Neurone DiseaseRESPIRATORY BIOMARKERS IN MOTOR NEURONE DISEASE

The inability to breathe is unfortunately the most common cause of death in people living with Motor Neurone Disease (MND). Last year, our clinical research group in Melbourne reported that breathing...

Notch monitoring in sleepNOTCH MONITORING IN SLEEP

Sleep apnea is a condition where breathing is abnormal during sleep. There are two main forms of sleep apnea: obstructive and central. For obstructive sleep apnea, breathing is reduced because the airway...

Recognising research meritRECOGNISING RESEARCH MERIT

Kudos to Dr. Lauren Booker & Dr. Jen Cori on their JOEM publication examining fatigue detection alarms in rural truck drivers. Their study explores the alarms' effectiveness, accuracy, and habituation, offering key insights into fatigue management.

Honoring Excellence in ResearchHONORING EXCELLENCE IN RESEARCH

Congratulations to Prof. Anne Holland and A/Prof. Narelle Cox for being featured in the NHMRC's 10 of the Best - 16th Edition. Their work exemplifies groundbreaking research delivering extraordinary outcomes.

World Sleep Day on 14th March 2025WORLD SLEEP DAY ON 14TH MARCH 2025

The benefits of quality sleep and to acknowledge the issue of sleep problems and their medical, educational, and social aspects as well as the prevention and management of sleep disorders, is promoted on World Sleep Day on the 14th March 2025.

AMRF Grant Awards for 2025AMRF GRANT AWARDS FOR 2025

Grants Success: The Institute for Breathing and Sleep (IBAS) has received two research grants from the Austin Medical Research Foundation (AMRF) for 2025. Congratulations to Dr Charissa Zaga and Dr Catherine Hill from IBAS.

Institute for Breathing and Sleep

Level 5, Harold Stokes Building, Austin Health
145 Studley Road
Heidelberg, Victoria, 3084

(03) 9496 5390

Email Us

Donate