Authors | Hayley, A.C. Downey, L.A. Hansen, G. Dowell, A. Savins, D. Buchta, R. Catubig, R. Houlden, R. Stough, C.K.K. |
---|---|
Type | Journal Article (Original Research) |
Journal | Forensic Science International |
PubMed ID | 29408718 |
Year of Publication | 2018 |
URL | https://www.ncbi.nlm.nih.gov/pubmed/29408718 |
DOI | /10.1016/j.forsciint.2017.12.033 |
Abstract | Hemp-derivative (Cannabis sativa L.) food products containing trace levels of Delta-9-tetrahydrocannabinol (THC) are proposed for consumption in Australia and New Zealand; however, it is unclear whether use of these products will negatively affect existing drug screening protocols. This double-blind, within-subjects, cross-over trial assessed 35 adults (17 male; 18 female), aged 22-52 years [Mean=30.7, Standard Deviation (S.D)+/-7.6]. Low dose THC oil [5mL bearer sesame oil containing 10mg/kg THC (0.046mg THC per 5mL dose)]; high dose THC oil [5mL bearer sesame oil containing 20mg/kg THC (0.092mg THC per 5mL dose)]; and a placebo oil (THC negative) was consumed during a three-week protocol. The Securetec Drugwipe((R)) II Twin device assessed THC presence (cut-off 20ng/mL) in oral fluid at baseline, at 5, 30, 60, 120 and 240min post-treatment. Blood was drawn at baseline, 30, 120 and 240min post-treatment, and urine at baseline and 240min post-treatment. No THC was detected in oral fluid, blood or urine samples at any time-point following consumption of the low or high THC dose. Trace concentrations of 11-nor-Delta9-tetrahydrocannabinol-9-carboxylic acid (THCa) were detected in blood 4-h after consumption of the high THC treatment (M=0.0001mg/L) and in urine at 4-h post consumption of both low and high THC treatments (M=0.0001mg/L and 0.0004mg/L, respectively). Consumption of low-content THC oil does not result in positive biological assessments. It is therefore highly unlikely that ingestion of products containing these levels of THC will negatively impact existing region-specific drug driving enforcement protocols. |
http://www.ibas.org.au/what-we-do/publications/3872953
Motor neurone disease (MND) causes the body's muscles to weaken. Breathing muscle weakness means that most people affected by MND will eventually lose the ability to take a deep breath and cough strongly....
RESPIRATORY BIOMARKERS IN MOTOR NEURONE DISEASE
The inability to breathe is unfortunately the most common cause of death in people living with Motor Neurone Disease (MND). Last year, our clinical research group in Melbourne reported that breathing...
Sleep apnea is a condition where breathing is abnormal during sleep. There are two main forms of sleep apnea: obstructive and central. For obstructive sleep apnea, breathing is reduced because the airway...
Kudos to Dr. Lauren Booker & Dr. Jen Cori on their JOEM publication examining fatigue detection alarms in rural truck drivers. Their study explores the alarms' effectiveness, accuracy, and habituation, offering key insights into fatigue management.
HONORING EXCELLENCE IN RESEARCH
Congratulations to Prof. Anne Holland and A/Prof. Narelle Cox for being featured in the NHMRC's 10 of the Best - 16th Edition. Their work exemplifies groundbreaking research delivering extraordinary outcomes.
Grants Success: The Institute for Breathing and Sleep (IBAS) has received two research grants from the Austin Medical Research Foundation (AMRF) for 2025. Congratulations to Dr Charissa Zaga and Dr Catherine Hill from IBAS.
Congratulations to Professor David Berlowitz, Dr Marnie Graco, and Dr Nicole Sheers who were recognised by Motor Neurone Disease (MND) Australia at a Parliament House event sponsored by the Parliamentary Friends of MND in Canberra last week.