Authors | McPhee, G.M. Downey, L.A. Noble, A. Stough, C. |
---|---|
Type | Journal Article (Original Research) |
Journal | Medical Hypotheses |
PubMed ID | 27692172 |
Year of Publication | 2016 |
URL | https://www.ncbi.nlm.nih.gov/pubmed/27692172 |
DOI | http://dx.doi.org/10.1016/j.mehy.2016.09.002 |
Abstract | As the elderly population grows the impact of age associated cognitive decline as well as neurodegenerative diseases such as Alzheimer's disease and dementia will increase. Ageing is associated with consistent impairments in cognitive processes (e.g., processing speed, memory, executive function and learning) important for work, well-being, life satisfaction and overall participation in society. Recently, there has been increased effort to conduct research examining methods to improve cognitive function in older citizens. Cognitive training has been shown to improve performance in some cognitive domains; including memory, processing speed, executive function and attention in older adults. These cognitive changes are thought to be related to improvements in brain connectivity and neural circuitry. Bacopa monnieri has also been shown to improve specific domains of cognition, sensitive to age associated cognitive decline (particularly processing speed and memory). These Bacopa monnieri dependent improvements may be due to the increase in specific neuro-molecular mechanisms implicated in the enhancement of neural connections in the brain (i.e. synaptogenesis). In particular, a number of animal studies have shown Bacopa monnieri consumption upregulates calcium dependent kinases in the synapse and post-synaptic cell, crucial for strengthening and growing connections between neurons. These effects have been shown to occur in areas important for cognitive processes, such as the hippocampus. As Bacopa monnieri has shown neuro-molecular mechanisms that encourage synaptogenesis, while cognitive training enhances brain connectivity, Bacopa monnieri supplementation could theoretically enhance and strengthen synaptic changes acquired through cognitive training. Therefore, the current paper hypothesises that the combination of these two interventions could improve cognitive outcomes, over and above the effects of administrating these interventions independently, as an effective treatment to ameliorate age associated cognitive decline. |
http://www.ibas.org.au/what-we-do/publications/3872915
Motor neurone disease (MND) causes the body's muscles to weaken. Breathing muscle weakness means that most people affected by MND will eventually lose the ability to take a deep breath and cough strongly....
Sleep apnea is a condition where breathing is abnormal during sleep. There are two main forms of sleep apnea: obstructive and central. For obstructive sleep apnea, breathing is reduced because the airway...
RESPIRATORY BIOMARKERS IN MOTOR NEURONE DISEASE
The inability to breathe is unfortunately the most common cause of death in people living with Motor Neurone Disease (MND). Last year, our clinical research group in Melbourne reported that breathing...
Kudos to Dr. Lauren Booker & Dr. Jen Cori on their JOEM publication examining fatigue detection alarms in rural truck drivers. Their study explores the alarms' effectiveness, accuracy, and habituation, offering key insights into fatigue management.
HONORING EXCELLENCE IN RESEARCH
Congratulations to Prof. Anne Holland and A/Prof. Narelle Cox for being featured in the NHMRC's 10 of the Best - 16th Edition. Their work exemplifies groundbreaking research delivering extraordinary outcomes.
WORLD SLEEP DAY ON 14TH MARCH 2025
The benefits of quality sleep and to acknowledge the issue of sleep problems and their medical, educational, and social aspects as well as the prevention and management of sleep disorders, is promoted on World Sleep Day on the 14th March 2025.
Grants Success: The Institute for Breathing and Sleep (IBAS) has received two research grants from the Austin Medical Research Foundation (AMRF) for 2025. Congratulations to Dr Charissa Zaga and Dr Catherine Hill from IBAS.